Psychology, Not Educational Neuroscience, Is the Way Forward for Improving Educational Outcomes for All Children: Reply to Gabrieli (2016) and Howard-Jones et al. (2016)

Jeffrey S. Bowers
University of Bristol

In Bowers (2016), I argued that there are (a) practical problems with educational neuroscience (EN) that explain why there are no examples of EN improving teaching and (b) principled problems with the logic motivating EN that explain why it is likely that there never will be. In the following article, I consider the main responses raised by both Gabrieli (2016) and Howard-Jones et al. (2016) and find them all unconvincing. Following this exchange, there are still no examples of EN providing new insights to teaching in the classroom, there are still no examples of EN providing new insights to remedial instructions for individuals, and, as I detail in this article, there is no evidence that EN is useful for the diagnosis of learning difficulties. The authors have also failed to address the reasons why EN is unlikely to benefit educational outcomes in the future. Psychology, by contrast, can (and has) made important discoveries that can (and should) be used to improve teaching and diagnostic tests for learning difficulties. This is not a debate about whether science is relevant to education, rather it is about what sort of science is relevant.

Keywords: educational neuroscience, education, instruction, neuroscience

In Gabrieli (2016), I argued that EN has yet to make any practical benefits for teaching in the classroom, but he does not see this as a serious problem because he views EN as a basic research enterprise that addresses topics of importance to education. He sees EN as analogous to cognitive neuroscience, affective neuroscience, or social neuroscience, which characterize the functional brain organization of perception, learning and memory, thought, emotion, and social cognition. And just as advances in cognitive, affective, and social neuroscience are expected to contribute to treatments for a range of disorders, including schizophrenia, depression, anxiety, and autism, advances in EN are expected to improve teaching in the future.

Before responding to the two commentaries, I would like to emphasize that my critique of EN should not be taken as an argument against neuroscience or as a claim that education should be uninformed by science. Rather, my main claim is that neuroscience (or cognitive neuroscience) is unlikely to be useful in designing or evaluating teaching methods for the classroom or interventions for individuals with learning difficulties. Furthermore, as I stress here, there is little reason to think that neuroscience will improve educational outcomes through the early diagnosis of learning disorders. The core problem is that for these purposes neuroscience does not add anything above and beyond psychology. Psychology, by contrast, can (and has) made important discoveries that can (and should) be used to improve teaching and diagnostic tests for learning difficulties. This is not a debate about whether science is relevant to education, but what sort of science is relevant.

Gabrieli (2016)

Gabrieli agrees with me that EN has yet to make any practical benefits for teaching in the classroom, but he does not see this as a serious problem because he views EN as a basic research enterprise that addresses topics of importance to education. He sees EN as analogous to cognitive neuroscience, affective neuroscience, or social neuroscience, which characterize the functional brain organization of perception, learning and memory, thought, emotion, and social cognition. And just as advances in cognitive, affective, and social neuroscience are expected to contribute to treatments for a range of disorders, including schizophrenia, depression, anxiety, and autism, advances in EN are expected to improve teaching in the future.

I see two problems with this characterization of EN. First, in contrast with Gabrieli (2016), many researchers claim that EN has already helped improve teaching in the classroom, and the explosion of articles, journals, research centers, teaching programs, and funding directed at EN reflect the widespread view that EN is poised to further advance teaching in the near-term. I provided a number of quotes to this effect in the target article, and Howard-Jones et al. (2016) summarize multiple examples of EN taken to be relevant to informing instruction today (see below). Indeed, the
push to train teachers about neuroscience (see Bowers, 2016) only makes sense per the view that EN can improve teaching in the classroom now.

Second, and more important, Gabrieli’s (2016) optimism regarding the promise of improving teaching through EN is based on an inapt analogy to the cognitive, social, and affective neurosciences. It does indeed seem plausible that these areas of neuroscience may in the future improve the well-being of persons with learning difficulties, depression, anxiety disorders, schizophrenia, and so forth; indeed, neuropharmacology has already led to important clinical treatments for learning difficulties, depression, anxiety disorders, schizophrenia, et cetera. The critical point to note, however, is that in all cases, the clinical advances were the direct result of brain intervention (e.g., Ritalin for attention-deficit/hyperactivity disorder, antidepressants, antianxiety, antischizophrenic drugs). This is qualitatively different than the claim that an improved understanding of the brain will inform behavioral interventions (see Bishop, 2013, who makes the same point). Different levels of analysis support different levels of intervention: A better understanding of genetics will likely support new genetic interventions (some relevant to education), a better understanding of the brain will likely support new medical interventions (some relevant to education), and a better understanding of psychology will likely support new behavioral interventions (some relevant to education). And, of course, linking levels of description is a fundamental goal of science (e.g., understanding the neurobiological and genetic basis of dyslexia is important). But whether neuroscience (or cognitive neuroscience) can contribute above and beyond psychology to designing and evaluating behavioral interventions is anything but clear. The analogy to medical interventions is common (see initial quote by Howard-Jones et al., 2016) but misguided.

Gabrieli (2016) and I also disagree about the current success and future promise of EN for individualized instruction and prediction. According to Gabrieli, a key achievement of EN is that it improves our ability to predict whether a child should be given a specific type of instruction or is likely to have difficulties in the future. Gabrieli describes a number of studies that are taken as strong evidence for the success of neuroscience in making predictions, such as diagnosing reading disorders or predicting whether a specific math tutoring intervention is well suited for specific children. Indeed, there is now a large literature and long history of using brain imaging to diagnose future learning difficulties and longitudinal outcomes across a range of domains, including reading (e.g., Hoeft et al., 2007); language, more generally, (Gutterm et al., 2005); second-language learning (Qi et al., 2015); mathematics (Dumanthiel & Klingberg, 2012); and future working-memory capacity (Ullman et al., 2014). In an excellent review article, Gabrieli et al. (2015) reviewed 72 neuroimaging studies used to make predictions for a wide range of behavioral outcomes. A key finding from this review is that 61 of the 72 identified studies were correlational in that brain measures were associated with known behavioral outcomes. As noted by Gabrieli et al. (2015), the success of these studies to predict the outcomes is better described as postdiction, which is akin to correctly predicting stock market crashes that occurred in the past rather than those that might occur in the future. This greatly inflates the estimates of prediction, especially when postdiction is based on studies with small sample sizes that include a wide range of possible variables (brain measures) for prediction and where the authors have a great deal of analytical flexibility (as is typical in these studies).

One way to provide a better estimate of prediction is cross-validation, in which a subset of data from a given study are used to develop a model that can be used for prediction, and then this model is used with the remaining data to make predictions. Gabrieli et al. (2015) identified four such studies relevant to education that used some form of cross-validation: three concerned with reading and one with math. Only one of these studies was carried out with young children, which could, in principle, be used to inform early diagnosis (Bach et al., 2013). However, the authors themselves urged caution in interpreting these results given the extremely small sample size in the study (11 average and 6 poor readers). Indeed, underpowered studies that report significant effects are the least likely to be replicated (e.g., Button et al., 2013).

As noted by Gabrieli et al. (2015), cross-validation is no substitute for making predictions on an independent sample. Indeed, these predictions are only useful to the extent that someone else can successfully predict learning outcomes in another lab with a comparable sample of participants. But despite over 2 decades of using neuroscience to make predictions, not a single study relevant to education has been carried out on an independent sample of children. Before making any strong claims regarding the predictive successes of EN, it is important that replications on independent samples are carried out.

Even if EN is shown to support predictions in independent samples of children, two more hurdles must be passed before the results are useful for education. First, the predictions from imaging are only relevant to educators if they contribute something above and beyond the predictions based on behavioral measures. However, in most (or perhaps even all) cases in which it has been claimed that imaging studies improve prediction above behavioral measures alone, some relevant behavioral measures have not been included. Consider reading, the domain in which the most predictions studies have been carried out. In a recent behavioral study, Heath et al. (2014) assessed the preliteracy skills of 4 year olds ($N = 102$) at the beginning of preschool and then assessed rapid automatized naming at the beginning and the end of kindergarten. Children’s literacy outcomes were measured at the end of Year 1 (age: 6 to 7 years). Combining these behavioral measures with a range of family factors, including parents’ phonological awareness, provided accurate classification of reading difficulties (sensitivity = .85; specificity = .90; overall correct = .88). Nevertheless, few neuroimaging studies concerned with the prediction of reading have considered whether imaging outperforms behavioral studies when family factors are considered, and no study has considered parents’ phonological awareness, a powerful predictor in this study. This again suggests that the unique contribution of neuroscience to prediction has been overestimated.

Second, even if we assume that the predictions (or postdictions) from neuroimaging studies are not overestimated, and we further assume that neuroimaging tools will continue to provide significant predictions above and beyond the best behavioral measures, there are good reasons to question the value of making earlier diagnoses. Again, consider the domain of reading where it is frequently claimed that early diagnosis is key. A question that needs to be asked is, “How early?” Behavioral measures appear to do a good job in making predictions in kindergarten (Heath et al., 2014). Would it be helpful to diagnosis likely dyslexia earlier, before children are introduced to written letters and words? This seems to be the assumption of various EN studies that have
attempted to diagnose dyslexia as early as 36 hr after birth (e.g., Molfese, 2000). But given that the best forms of interventions involving training skills directly relevant to literacy (e.g., Bowers, Kirby, & Deacon, 2010; Snowling & Hulme, 2012), it is not clear what benefits can be gained from interventions carried out in younger children. Indeed, there is little evidence that interventions focusing on nonwritten materials are successful. For example, the intervention Fast ForWord is based on the claim that dyslexia is the result of rapid auditory temporal processing skills that can be trained before children are introduced to written letters and words. However, the main evidence for the efficacy of Fast ForWord comes from flawed neuroimaging studies (Bishop, 2013). When a systematic review of behavioral studies was carried out, no evidence was found to indicate that Fast ForWord improves reading (Strong, Torgerson, Torgerson, & Hulme, 2011).

In sum, Gabrieli (2016) provides no good reasons to support the claim that EN will be useful for classroom interventions in the future; no evidence that EN has improved the predictions of learning disorders above and beyond behavioral data, given that there are no examples of neuroscience predicting learning disorders in independent samples of children; and no reasons to think that earlier predictions would improve educational outcomes in any case.

Howard-Jones et al. (2016)

Howard-Jones et al. (2016) are more critical of my critique of EN and more positive about the current successes of EN in informing teaching in the classroom. Indeed, they identify a number of EN studies that they claim have already provided important insights for teaching. However, their commentary reveals a number of theoretical confusions regarding my position, and their examples of useful insights for instruction contributed by EN do not bear up to scrutiny.

Theoretical Confusions

According to Howard-Jones et al. (2016), I was attacking a straw man when I challenged the view that neuroscience alone is useful for education. They point out that the neuroscience in EN refers to cognitive neuroscience that is concerned with making links between the brain and behavior, and, as a consequence, psychology is central to EN. They contend that my focus on the neuroscience to the exclusion of other fields undermines my critique of EN. However, this reveals a fundamental confusion regarding my position. My claim is that the neuroscience in cognitive neuroscience does not contribute anything to education above and beyond psychology. As I wrote in the target article, “even areas of neuroscience that focus on both brain and behavior, such as cognitive neuroscience, are only relevant to education to the extent that they provide new insights into behavior” (Bowers, 2016, p. 605).

This conclusion was supported by my detailed review of the literature that did not identify any examples of EN contributing novel insights into the design or evaluation of teaching in the classroom or any insights for interventions for individuals with learning disorders. In the following passages, I consider the examples of EN that Howard-Jones et al. (2016) highlighted and show why these studies also fail to address my critique.

Howard-Jones et al. (2016) expressed another related confusion when they wrote, “In Bowers (2016), psychology and neuroscience are pitted as competitors in explaining behavior and, using arguments rehearsed by others (Bishop, 2014; Coltheart & Mar, 2012; Davis, 2004; Schumacher, 2007), it is proposed that psychology should have central status” (p. 621).

In fact, I agree with Howard-Jones et al.’s (2016) assertion that behavior and the brain play essential roles in cognitive neuroscience, given that the goal of cognitive neuroscience is to explain the brain basis of behavior. There is no “knowledge hierarchy” in this domain. But again, my claim is that neuroscience is irrelevant to the design and evaluation of teaching. This is why I suggested replacing the “bridge too far” analogy with the “one-way street” analogy. The neuroscience in EN is of interest to neuroscientists and psychologists, and it may contribute to future medical advances relevant to education, but it is (and likely always will be) irrelevant to the task of designing or evaluating instruction.

A third theoretical confusion used to argue for the promise of EN is expressed in the following passage:

... if one accepts that psychological theory can contribute to educational practice and that neuroscience can contribute to psychological theory, it is illogical to disallow the transitive inference and to instead argue that, in principle, neuroscience is irrelevant to educational practice. (Howard-Jones et al., 2016, p. 621)

However, there is nothing transitive about this argument. Neuroscience might improve psychological theories in ways that are irrelevant to education. Indeed, given the different levels of analysis involved in brain and behavioral research (as noted in my response to Gabrieli, 2016), there is no reason to assume that the neuroscience in EN will add any new insights relevant to teaching. What would be relevant would be examples of neuroscience providing unique insights into designing or evaluating instruction in the classroom or for individuals; methods of early diagnosis of learning disorders; or, at minimum, good reasons to think there is promise of achieving these goals in the future. Thus, it is interesting that Howard-Jones et al. (2016) provide specific examples of EN research studies that have purportedly contributed insights relevant to education; however, I would characterize these studies in the same way as those I reviewed in the target article—namely, they are trivial in the sense that the findings are self-evident, misleading in the sense that behavioral studies already motivated the interventions, or unwarranted in the sense that the recommendations do no follow from the EN study.

A Review of the Evidence Cited by Howard-Jones et al. (2016)

Under the heading “Examples Illustrating the EN Approach and Its Potential,” Howard-Jones et al. (2016) first cite Tanaka et al. (2011), as does Gabrieli (2016) in his commentary. The Tanaka study provided neuroscientific evidence against the IQ-discrepancy criteria for diagnosing dyslexia given that discrepant and nondiscrepant poor readers show similar brain abnormalities. As noted by Gabrieli, this finding has important policy implications, as it suggests that poor readers ought to receive remedial support regardless of IQ. I agree with this, but it is important to note that behavioral arguments against the IQ-discrepancy definition of dyslexia have a long history (e.g.,
Stanovich, 1991), and Tanaka et al. (2011) motivated their neuroimaging study by a long list of behavioral studies that reported similar phonological deficits in both discrepant and nondiscrepant poor readers and, critically, cited multiple behavioral studies showing that both types of readers respond similarly to remedial reading programs designed to ameliorate phonological deficits. This later finding is far more relevant to policy than the (interesting) finding that discrepant and nondiscrepant poor readers show similar brain anomalies. Indeed, like many of the studies I review in the following text, this is a good example of the “one-way street” analogy, in which EN is relevant to neuroscientists and psychologists but provides no new suggestions for improving interventions that would be relevant to teachers.

Next, Howard-Jones et al. (2016) cite a successful intervention study for dyslexia by Fraga González et al. (2015) that was motivated by electrophysiological research showing abnormal processing of letter—sound correspondences in people with dyslexia (Froyen, Bonte, van Atteveldt, & Blomert, 2009). Howard-Jones et al. claim that the Froyen et al. study showed that the deficit persists longer than was previously suggested by behavioral data. However, Froyen et al. cited behavioral evidence suggesting just this, and the intervention used by Fraga González et al. (2015) was a close adaptation of a previous study motivated by behavioral data (Tijms, 2007).

Next, Howard-Jones et al. (2016) cite an intervention by Tsang, Blair, Bofferding, and Schwartz (2015) that was motivated by various neuroscience results and designed to teach children negative number concepts. But as Howard-Jones et al. note, the initial hypothesis was motivated by behavioral studies. The same is true for the Number Race and Graphogame interventions that were designed to train approximate comparison processes and learning exact numerosities and symbol knowledge, respectively. Once again, behavioral evidence relevant to designing these instructions preceded the neuroscience (e.g., see Wilson, Revkin, Cohen, Cohen, & Dehaene, 2006). For early behavioral evidence in support of the claim that instruction should involve comparing numerical magnitudes see Griffin, Case, and Siegler (1994).

It is not a coincidence that all these EN studies were carried out after the relevant hypothesis was advanced on the basis of behavioral data. Indeed, the goal of cognitive neuroscience is to understand how the brain supports psychological processes, and, accordingly, psychology comes first. Howard-Jones et al. (2016) themselves state, “. . . [W]hen Bowers claims that instruction investigated by EN is often first motivated by behavioral data, we sincerely hope this is true and continues to be so” (p. 621). This does raise the issue of how EN is going to help motivate new forms of instruction and training.

One possible response to the observation that psychology comes first is that the neuroscience provides stronger evidence for a given hypothesis. On this view, EN provides a stronger motivation to design an intervention. This seems to be the implication of the following point:

Bowers is uncritical of behavioral evidence. For example, it is not considered that many measures of behavior can often be unreliable and lack validity (e.g., Holloway & Ansari, 2009; Maloney, Risko, Preston, Ansari, & Fugelsang, 2010; Stolz, Besner, & Carr, 2005) or that the absence of a behavioral change on a psychological measure of behavior does not imply that no change in behavior has occurred. By arguing that neuroimaging has nothing to add if behavior does not change, Bowers makes a classic misinterpretation of null findings. (p. 621)

I agree that there is a replication crisis in psychology, but the problem is worse in cognitive neuroscience. The root causes of the replication crisis are the same in both domains: studies with small sample sizes, single experiments without replication, analytical flexibility (that can lead to p-hacking), and a bias in publishing significant results. In contrast to psychological studies, neuroscience studies tend to have smaller sample sizes, fewer replications, and much more analytical flexibility. The consequence is a replication crisis in neuroscience as well (Button et al., 2013). Indeed, this helps explain why many EN results claiming to support specific forms of instruction are not supported when assessed with more powerful behavioral experiments. For example, Bishop (2013) reviewed all the studies between 2003 and 2011 that measured brain function before and after an intervention that focused on improving language skills. All six studies were seriously flawed (e.g., underpowered, analytical flexibility, no replication), and the conclusions were not supported in multiple and more powerful behavioral studies.

And, more important, even if the neuroscience results are robust and reliable, the link between the neuroscience and the cognitive processes that support a given skill is often indirect and hard to specify. For example, abnormal BOLD signals in visual cortex may reflect abnormal processes in another brain area (Dorjee & Bowers, 2012), and as noted in the target article, Ouladé, Napoliello, and Eden (2013) attributed changes in the BOLD signal in V5/MT (visual cortex) to improvements in phonological processing. If the goal is to identify the cognitive processes that are responsible for learning deficits, then it is almost always more straightforward to test behavior. For instance, to test the hypothesis that phonological processes are impaired in dyslexia, rather than looking at BOLD signals in V5/MT (involved in visual motion processing), in temporoparietal cortex (involved in phonological processes), or in ventral occipito-temporal cortex (the visual word form area), researchers should measure the phonological skills of children who are struggling to read.

Howard-Jones et al.’s (2016) additional claim that I have made a “classic misinterpretation” of null findings reflects another fundamental misunderstanding of my position. If a given behavioral study fails to improve performance on some task, then I agree it does not rule out the possibility that the intervention was effective. The study may have been underpowered, or the wrong behavioral test may have been administered. However, these Type I errors cannot be rectified with neuroimaging. Putting aside the dangers of false positives in neuroimaging results (given the reasons noted previously), an intervention is only useful to the extent that it produces functionally relevant behavioral outcomes. If a researcher is concerned that a behavioral intervention was successful but nevertheless null results were obtained, the only appropriate response is to carry out a better and more powerful behavioral study. As I wrote in the target article, brain measures should not be used as a more sensitive measure of behavioral change.

Rather than using (expensive) fMRI to look for a weak training effect that may or may not manifest itself in behavior following further training, researchers should explore whether more extensive (cheaper) behavioral training does indeed result in useful changes in behavior. . . . (Bowers, 2016, p. 605)
Continuing on with examples of the successes of EN, Howard-Jones et al. (2016) describe how EN can provide evidence for the compensatory processes in remediation, with implications for designing instruction. The authors cite a study that found regions in the right prefrontal cortex to be more activated after a phonological remediation for dyslexia (Shaywitz et al., 2004). On the basis of this observation, Howard-Jones et al. argue that a better understanding of these brain regions will contribute to future interventions.

The strategy of studying the prefrontal cortex in an effort to design better forms of interventions is misguided, given that these regions are undoubtedly involved in supporting many different functions (any one of which may have contributed to these results), given that characterizing these functions is no easy matter, and given that it is not clear that such characterizations would provide any new insights into instruction. To make things worse, as summarized in the target article, the pattern of BOLD changes reported by Shaywitz et al. (2004) were more complicated than as summarized by Howard-Jones et al. (2016), which makes it all the more unclear as to what teaching implications might follow from this study.

Psychological research, by contrast, leads to highly specific hypotheses regarding possible compensatory strategies that may be useful for people with dyslexia. For example, we know that learning is best when information is studied in a meaningful and organized way (Bower, Clark, Lesgold, & Winzenz, 1969), and we also know that the writing system in English is highly organized and logical when morphological and etymological constraints are considered in addition to phonology (Venezky, 1967). This suggests that we might design literacy interventions that highlight the meaning and organization of English spellings—what Bowers and Kirby (2010) called “structured word inquiry”—rather than focusing so heavily on meaningless letter—sound correspondences (i.e., phonics). Consistent with this hypothesis, there is now growing evidence that teaching children the logic of their writing system helps reading and writing (e.g., Devonshire, Morris, & Fluck, 2013) and vocabulary (e.g., Bowers & Kirby, 2010), especially in younger and struggling children. It is hard to imagine how cognitive neuroscience could have led to this hypothesis. Of course, more experimental work is needed before any strong conclusions are warranted regarding structured word inquiry, and this will require randomized control trials that measure reading skills.

Advocates of EN often do not appreciate the challenge that compensatory processes pose for EN. For example, consider the observation that dyscalculia is often associated with abnormal activation of the intraparietal cortex. This finding is taken as evidence that dyscalculia is associated with impaired “number sense.” This in turn is thought to have implications for education. For example, Butterworth et al. (2011) concluded that “[a]lthough the neuroscience may suggest what should be taught, it does not specify how it should be taught” (p. 1051). Howard-Jones et al. (2016) again highlight the importance of this work because it identifies what should be taught (i.e., the authors suggest that other forms of research can build on EN studies to identify how to best achieve this). However, this conclusion rests on the standard logic of EN—namely, the claim that interventions should target the deficit. An equally plausible hypothesis is that interventions should target compensatory skills. That is, the neuroscience does not indicate what should be taught. Behavioral studies are needed to distinguish between these two possibilities. And, in any case, the hypothesis that dyscalculia is associated with a deficit in the “number sense” was first supported on the basis of behavioral studies (e.g., Koontz & Berch, 1996; Landerl, Bevan, & Butterworth, 2004).

Finally, Howard-Jones et al. (2016) describe evidence for the importance of teaching children about the plasticity of the brain. More specifically, the authors claim that a student’s theory of learning can be influenced by his or her views of the brain, and, further, brain theories of learning can be an important determinant of academic motivation and success. The first claim is based on a study that found that children judged that intelligence is more malleable in a multiple-choice test after being taught that the brain is plastic (29% vs. 21% of children endorsed the statement “You can always change how intelligent you are” after the lesson; Dekker & Jolles, 2015). This is not a surprising finding (furthermore, it is not clear what the right answer is). The later two claims are based on studies that found teaching brain plasticity to students improved their academic motivation as measured by teachers (Blackwell, Trzesniewski, & Dweck, 2007) and raised the grades of students most likely to drop out of school (Paunesku et al., 2015). These later findings are striking, and replications are warranted. But, in any case, these studies provide no evidence for EN. To support the conclusion that learning about the brain is relevant to these findings, it is necessary to show that the experimental group shows the same advantage compared with a control group who were taught about the psychology of learning and evidence that adults can learn (without reference to the brain). This was not done.

It is perhaps worth noting that I am not claiming that it is logically impossible for EN to improve teaching in the future. Rather, I am claiming that the principled problems with the logic motivating EN makes it unlikely. It is always possible that a neuroscience finding will lead to a novel hypothesis regarding how cognitive processes support a skill (or how cognitive processes are impaired in the case of a deficit) that might suggest a new form of instruction, and this instruction is demonstrated to be useful in subsequent behavioral work (i.e., a case where the neuroscience precedes the behavior studies). But there are no examples of this thus far, and it is hard to even imagine such an outcome. Consider Gabrieli’s (2016) first example of neuroimaging constraining theory in a relevant manner for education, namely studies suggesting that dyslexia reflects a deficit in accessing phonetic representations rather than a deficit in the quality of the representations themselves (e.g., Boets et al., 2013). For the sake of argument, put aside the fact that this hypothesis was first advanced on the basis of behavioral work (Ramus & Szenkovits, 2008). The question remains: What does an educator do with this hypothesis? It is not at all obvious how an access deficit motivates a new form of instruction, let alone whether instruction should be designed to ameliorate or compensate for this deficit. This is just one example, but the failure of EN to generate any novel hypotheses regarding new forms of instruction is telling. Far more promising is to develop and test hypotheses on the basis of behavioral work, and there are already many examples of psychological research doing just this (e.g., Dunlosky, Rawson, Marsh, Nathan, & Willingham, 2013; Roediger, Finn, & Weinstein, 2012).
Setting the Record Straight

Let me briefly respond to the claim that I mischaracterized Goswami (2004a) in one of multiple “unfortunate use of quotes.” The quote in question suggests that neuroscience can provide a more direct way of evaluating the efficacy of an intervention than behavior itself, but Howard-Jones et al. (2016) claim that the quote was taken out of context. Although I maintain that my reading of the full text is a reasonable interpretation of what was written, I am sorry for the confusion. In any case, the important point is not whether neuroscience provides a more direct measure of the efficacy of a treatment, but whether neuroimaging should be used at all in evaluating interventions. Goswami (2004a) did appear to endorse that view when she wrote, “If the effects generalize to literacy (for example, via improved automaticity), then changes in occipital, temporal, and parietal areas should also be observed” (p. 9). And again this view seemed to be endorsed by Goswami (2004b) in the direct quote Howard-Jones et al. (2016) provide: “If an exercise-based package actually improves reading in dyslexic children, there should be measurable effects in the neural systems for reading” (p. 625). These statements are simply false. For example, another possible outcome is that reading improves following exercise, and it reflects compensatory processes that occur in brain regions not normally associated with reading, such as in the right prefrontal cortex. Changes in the neural systems typically used for reading cannot be used to assess whether the treatment worked.

Similarly, although Howard-Jones et al. (2016) state that “EN does not claim . . . that educational achievement should be evaluated using brain imaging,” they appear to claim that neuro-science is relevant to evaluating interventions in other contexts (p. 624). For example, as detailed in the preceding text, the authors state that EN is useful when behavior measures fail to observe an effect following an intervention. The implication is that brain imaging can be used to measure behavioral change that was not captured in task performance. More important, as noted in the target article, the claim that neuroscience is relevant to evaluating an intervention is common in the literature, but it is incorrect (see Coltheart & McArthur, 2012).

Summary

In Bowers (2016), I claimed that EN has not contributed any novel insights into instruction above and beyond behavioral research, and there are still no examples after this exchange. Similarly, as detailed here, there are no good examples of the neuroscience in EN uniquely contributing to the early diagnosis of learning disorders or predicting longitudinal outcomes of a given intervention for specific children. Perhaps most important, neither Gabrieli (2016) nor Howard-Jones et al. (2016) provide any sound reasons to think that the neuroscience in EN will contribute to improving instruction in the future. Given all the excitement and funding directed at EN, some educators and researchers might find these conclusions surprising.

I want to emphasize again that I am neither arguing that science is irrelevant to improving education nor claiming that understanding cognition is irrelevant (as Howard-Jones et al., 2016 suggest). Rather, I am claiming that psychology is the relevant discipline to improve educational outcomes for all children.

Received June 28, 2016
Revision received August 2, 2016
Accepted August 2, 2016